
DVB-T Seminar

Topic 7: Frame Building

Carsten Presser

February 13, 2006

1

Contents

I OFDM Frames 3

1 General information 3

2 Basics for frame building 3
2.1 Scattered Pilot Cells . 3
2.2 Continual Pilots . 3
2.3 PRBS used in frame building . 3
2.4 Pilot modulation . 3
2.5 Differential Binary Phase Shift Keying 4
2.6 TPS modulation . 4

II Implementation 5

1 Encoder part: dvbt 7 frame.m 5
1.1 Interfaces . 5
1.2 Program parts . 5

1.2.1 Input buffer . 5
1.2.2 Fixed data . 6
1.2.3 PRBS Implementation . 6
1.2.4 Superfame building: Add pilot and TPS carrier 7

1.3 Problems . 9

2 Decoder part: dvbt 7 iframe.m 10
2.1 Interfaces . 10
2.2 Program parts . 10

2.2.1 Buffers . 10
2.2.2 Fixed data . 11
2.2.3 TPS demodulation . 12
2.2.4 Frame start detection . 13
2.2.5 Strip pilot and TPS carriers 13

2.3 Problems . 15

III Testing 16

1 General considerations 16

2 Testing encoder and decoder 16
2.1 Implementation . 16

2.1.1 Test data . 16
2.1.2 Encoding . 16
2.1.3 Decoding . 16

2.2 Problems . 17

2

Part I

OFDM Frames

1 General information

Data in a DVB-T transmission ist organized in frames and superframes.
Each frame consits of 68 Symbols, numbered from 0..67. A superframe contains
4 of these frames.
In addition to the transmitted data, an ODFM frame includes TPS carriers,
scatterd pilot cells and continual pilot carriers.

In 2K mode, there are 1705 active carriers; in 8k mode there are 6817 active
carriers. Out of these 1705 (6817) carriers, only 1512 (6048) contain payload.

2 Basics for frame building

2.1 Scattered Pilot Cells

For the symbol of index l (ranging from 0 to 67), carriers for which index k
belongs to the subset

k = Kmin + 3 · (l mod 4) + 12p, p εN, p ≥ 0, k ε [Kmin; Kmax] (1)

are scattered pilots. Where p is an integer that takes all possible values greater
than or equal to zero.

2.2 Continual Pilots

In addition to the scattered pilots 45 (2k) or 177 (8k) pilots are inserted as
shown in table XXX. These pilots are on the same position in every symbol.

2.3 PRBS used in frame building

The PRBS is used to modulate both pilot and TPS carriers. The PRBS is
initialized so that the first output bit from the PRBS coincides with the first
active carrier. A new value wk is generated by the PRBS on every carrier
(payload, pilot or TPS).

2.4 Pilot modulation

Pilots are transmitted at boosted power level. The modulation is given by:

< =
4
3
· 2 (0.5− wk) (2)

= = 0 (3)

wk is the output bit provided by the PRBS.

3

2.5 Differential Binary Phase Shift Keying

DBPSK is a modulation with one bit per symbol. The modulation scheme itself
is very easy: a logical one is represented by a change (shift) of the phase, a
logical zero is represented by the same phase. So the actual bit is not encoded
on a symbol, but between two symbols (a change can only occur between two
symbols). Because of this fact, the first symbol (initialization) in a DBPSK
modulation does not convey any information. This is the same in decoding, the
first symbol can’t be decoded; the first bit arrives with the second symbol.

Demodulating is also a simple task: just check if the phase shifted between
two symbols.

2.6 TPS modulation

Unlike the pilot carriers, TPS carriers are transmitted at a normal power level.
In a Symbol each TPS carrier conveys the same information. The TPS data
itself is DBPSK modulated.

In addition to the great redundancy achieved through distributing the TPS
information over multiple carriers, the TPS word itself is protected with a BCH-
code, which will be processed in module 6 dvbt 6 itps.m.

Each of the 68 TPS bits is modulated in one of the 68 symbols in a frame.
The modulation scheme for the first symbol (initialization) is the same as the
pilot carrier modulation (expect the power-level):

< = 2 (0.5− wk) (4)
= = 0 (5)

The TPS carriers in the following symbols (l > 0) are modulated with the
following rule:

=l = 0 (6)

<(l) =

{
<(l−1) sl = 0,

−1 · <(l−1) sl = 1
(7)

sl is the TPS bit for the symbol l.

4

Part II

Implementation

1 Encoder part: dvbt 7 frame.m

The function dvbt 7 frame.m is the 7th function in the encoder pipeline. It’s
task is to add TPS information (provided by module 6) and pilot (static) to
the symbols generated by module 5. As the TPS information is cyclic with
every superframe, the program collects input data from module 5 until enough
symbols to build a complete superframe are in its input buffers.

1.1 Interfaces

The input data needs to be one symbol: a 1x1512 (2k-mode) or 1x6048 (8-k-
mode) matrix. Once the program has collected enough input data (272 sym-
bols), it starts to generate a superframe.
A superframe is a 272x1705 (2k-mode) or 272x6817 (8k-mode) matrix with
complex entrys.

1.2 Program parts

1.2.1 Input buffer

The Encoder has to persistent variables: sf raw and sf raw cnt.

18 persistent sf_raw; % these are my buffers
19 persistent sf_raw_cnt;
20

In Case these Variables are empty, they are initialized.

40 % init buffers in case they are empty
41 if isempty(sf_raw_cnt)
42 sf_raw = zeros(nSymbolsSF,wi);
43 sf_raw_cnt = 0;
44 end
45

Input data will be collected until the buffer is filled and we can start to build
a complete superframe. After that, the input buffer is reset, so we can start
collecting data for the next superframe. In case the buffer is not filled up, the
programm exits to request further input.

46 % now collect data and fill up my personal input buffer
47 if sf_raw_cnt < nSymbolsSF
48 sf_raw_cnt = sf_raw_cnt + 1;
49 sf_raw(sf_raw_cnt,:) = sym;
50 debug(sprintf (’[dvbt_7_frame] inputbuffer @%2.1f %%\n’,(sf_raw_cnt/nSymbolsSF*100)),3);
51 if sf_raw_cnt < nSymbolsSF
52 sf = [];
53 return;

5

54 end
55 end
56 sf_raw_cnt = 0;
57

1.2.2 Fixed data

In Order to insert TPS and pilot information we need the carrier numbers as
described in ??.

64 % these are the carrier numbers taken from the spec (i HATE typing stupid numbers)
65 TPS_FIXED_2K = [34,50,209,346,413,569,595,688,790,901,1073,1219,1262,1286,1469,1594,1687,0];
66 TPS_FIXED_8K = [34,50,209,346,413,569,595,688,790,901,1073,1219,1262,1286,1469,1594,1687,1738,1754,1913,2050,2117,2273,2299,2392,2494,2605,2777,2923,2966,2990,3173,3298,3391,3442,3458,3617,3754,3821,3977,4003,4096,4198,4309,4481,4627,4670,4694,4877,5002,5095,5146,5162,5321,5458,5525,5681,5707,5800,5902,6013,6185,6331,6374,6398,6581,6706,6799,0];
67 PILOT_FIXED_2K = [0,48,54,87,141,156,192,201,255,279,282,333,432,450,483,525,531,618,636,714,759,765,780,804,873,888,918,939,942,969,984,1050,1101,1107,1110,1137,1140,1146,1206,1269,1323,1377,1491,1683,1704,0];
68 PILOT_FIXED_8K = [0,48,54,87,141,156,192,201,255,279,282,333,432,450,483,525,531,618,636,714,759,765,780,804,873,888,918,939,942,969,984,1050,1101,1107,1110,1137,1140,1146,1206,1269,1323,1377,1491,1683,1704,1752,1758,1791,1845,1860,1896,1905,1959,1983,1986,2037,2136,2154,2187,2229,2235,2322,2340,2418,2463,2469,2484,2508,2577,2592,2622,2643,2646,2673,2688,2754,2805,2811,2814,2841,2844,2850,2910,2973,3027,3081,3195,3387,3408,3456,3462,3495,3549,3564,3600,3609,3663,3687,3690,3741,3840,3858,3891,3933,3939,4026,4044,4122,4167,4173,4188,4212,4281,4296,4326,4347,4350,4377,4392,4458,4509,4515,4518,4545,4548,4554,4614,4677,4731,4785,4899,5091,5112,5160,5166,5199,5253,5268,5304,5313,5367,5391,5394,5445,5544,5562,5595,5637,5643,5730,5748,5826,5871,5877,5892,5916,5985,6000,6030,6051,6054,6081,6096,6162,6213,6219,6222,6249,6252,6258,6318,6381,6435,6489,6603,6795,6816,0];
69 % switch mode
70 if DVB_SETTINGS.mode == ’2’
71 PILOT_FIXED = PILOT_FIXED_2K + 1;
72 TPS_FIXED = TPS_FIXED_2K + 1;
73 TPS_FIXED_CNT = 20;
74 PILOT_FIXED_CNT = 45;
75 elseif DVB_SETTINGS.mode == ’8’
76 PILOT_FIXED = PILOT_FIXED_8K + 1;
77 TPS_FIXED = TPS_FIXED_8K + 1;
78 TPS_FIXED_CNT = 68;
79 PILOT_FIXED_CNT = 177;
80 end
81

These variables have the following meaning:

TPS FIXED 2K The carrier numbers for fixed TPS carriers in 2k-mode

TPS FIXED 8K The carrier numbers for fixed TPS carriers in 8k-mode

PILOT FIXED 2K The carrier numbers for fixed pilot carriers in 2k-mode

PILOT FIXED 8K The carrier numbers for fixed pilot carriers in 8k-mode

TPS FIXED CNT The absolute number of fixed TPS carriers

PILOT FIXED CNT The absolute number of fixed pilot carriers

TPS FIXED The carrier numbers for fixed TPS carriers in the selected mode
(Matlab start to count array indices with 1)

PILOT FIXED The carrier numbers for fixed pilot carriers in the selected
mode (Matlab start to count array indices with 1)

1.2.3 PRBS Implementation

The PRBS ist initialzied with every 11 bits as ’1’. The PRBS istself is stored
as a simple integer in the varbiable PRBS register.

6

90 % start the pseudo-random-number-generator (see 4.5.2)
91 debug(sprintf(’[dvbt_7_frame] initializing the pseudo-random-number-generator...\n’),1);
92 PRBS_register = 2^12 - 1;
93

A New bit is generated on line 123:

123 wk = bitget(PRBS_register,11:1:11);
124 PRBS_register = bitshift(PRBS_register,1) + xor(bitget(PRBS_register,11:1:11),bitget(PRBS_register,9:1:9));
125

Here simply the last bit of the stored value is taken. After that, we shift the
whole register and add a new first bit with the xor operation on bit 11 and 9.
As we are already inside the CarrCnt loop, wich iterates over all carriers, a new
bit is generated on every carrier, as demanded in 2.3.

1.2.4 Superfame building: Add pilot and TPS carrier

The main part of the program consits of 3 nested loops:

FrameCnt This loop runs 4 times. In every cycle, one frame is processed,
producing a complete superframe.
The only task in this loop part is to get the TPS word, as it changes for
every frame embedded in a superframe.

SymbolCnt The SymbolCnt loop iterates over the 68 symbols of a frame. Each
time this loop starts, we reset some counter used in the inner CarrCnt
loop. The most important part here is to calculate the number of the first
scattered pilot in the current symbol, as done in line 113:

113 % for the scattered pilots: get the index of the FIRST scattered pilot:
114 % HINT: we need to add one, because matlab (and i) start to count carriers by 1.
115 % the same goes for (SymbolCnt - 1)
116 sc_pilot_1 = 1 + 3 * mod((SymbolCnt-1),4);
117

CarrCnt The innermost loop runs over the numer of active carriers, respective
to the selected mode. The Algorithm is very simple: 3 checks are done, if
the current carrier is either fixed TPS, scatterd pilot or fixed pilot. If not,
the modulated payload is inserted:

170 %
171 % okay... now we reached here means: this symbol actually contains payload.
172 %
173 carrier_cnt = carrier_cnt + 1;
174 sf(CurrSymbolNum,CarrCnt) = sf_raw(CurrSymbolNum,carrier_cnt);
175

As mentioned above, there are 3 checks bevore this:

fixed pilot A simple check is done, if the current carrier matches one
of the the fixed pilots which are stored in PILOT FIXED. If yes,
the carrier is modulated and we continue to process the next active
carrier.

7

151 %
152 % check for fixed pilot
153 %
154 if CarrCnt == (PILOT_FIXED(pilot_cnt+1))
155 % looks like this carrier is a FIXED pilot carrier
156 pilot_cnt = pilot_cnt + 1;
157 sf(CurrSymbolNum,CarrCnt) = pilot_data_mod;
158 continue;
159 end
160

scatterd pilot This is the same as for fixed pilots, expect the check if
the current carrier is a scatterd pilot. Because scattered pilots occur
on every 12th carrier, this check can be easyly done with a modulo
division:

161 %
162 % check for scattered pilot
163 %
164 if mod((CarrCnt - sc_pilot_1),12) == 0
165 % looks like this carrier is a SCATTERED pilot carrier
166 sf(CurrSymbolNum,CarrCnt) = pilot_data_mod;
167 continue;
168 end
169

fixed TPS Checking if the current carrier is a TPS carrier works analog
to the fixed pilot carriers. The only change is the modulation (pilot
carriers don’t carry any usefull data). Because the TPS carriers are
DBPSK modulated, a different code path is needed for the first and
the rest of the symbols.

131 %
132 % check for TPS
133 %
134 if CarrCnt == (TPS_FIXED(tps_cnt+1))
135 % in case we are here for the first time, we need to modulate the TPS carrier according to wk.
136 if SymbolCnt == 1
137 % modulate TPS-Bit S0
138 tps_data_mod(CarrCnt) = 2 * (1/2 - wk);
139 else
140 % do a DBPSK
141 if tps_word(SymbolCnt) == 1
142 tps_data_mod(CarrCnt) = -1 * tps_data_mod(CarrCnt); % shift phase
143 end
144 end
145 % looks like this carrier is a FIXED tps-carrier
146 tps_cnt = tps_cnt + 1;
147 sf(CurrSymbolNum,CarrCnt) = tps_data_mod(CarrCnt);
148 continue;
149 end
150

8

1.3 Problems

In case the mode (2k or 8k) is switched and the modules input buffers are not
cleared manually, the program will encounter an error because it tryes to add
data in a matrix of incorrect size. Because this is not a killer bug, this issue has
not been solved. Some other modules seem to have the same problem to. This
can be workarounded by executing a ’clear all’ right before a encoder run.

9

2 Decoder part: dvbt 7 iframe.m

The decoder program dvbt 7 iframe.m does the exact opposite of the encoder
dvbt 7 frame.m. It removes pilot information and decodes TPS data.

2.1 Interfaces

The input data needs to be one symbol: a 1x1705 (2k-mode) or 1x6817 (8-k-
mode) matrix. Once the program has collected a complete frame, it starts the
actual decoding. A frame is a 68x1512 (2k-mode) or 68x6048 (8k-mode) matrix
with complex entrys.

2.2 Program parts

2.2.1 Buffers

Because of the FrameDetection Algorithm, i is necessary to store some more
persistent data.

13 %
14 % STEP 0: Get global & persistent data;
15 %
16 global DVB_SETTINGS; % import data
17 global DVB_TPS_STRUCT;
18 persistent f_raw;
19 persistent f_raw_cnt;
20 persistent f_raw_cnt_disc;
21 persistent frame_detected;
22 persistent tps_data_mod;
23 persistent tps_data;
24

25

Buffer initialization and filling is done analog to the encoder:

46 % init buffers in case they are empty
47 if isempty(f_raw_cnt)
48 % we collect input data here
49 f_raw = zeros(nSymbols,wi);
50 f_raw_cnt = 0;
51 f_raw_cnt_disc = 0;
52

53 % init a matrix holding TPS-modulation information (we need this for PSK)
54 tps_data_mod = zeros(1,wo);
55

56 % init a matrix holding the DEmodulated TPS-Bits
57 tps_data = zeros(nSymbols,1,’int8’);
58 tps_data(:,1) = -1; % set to undefined
59

60 % a marker: did we already detect a frame?
61 frame_detected = 0;
62 end

10

63

64 % now collect data and fill up my personal input buffer
65 f_raw_cnt = f_raw_cnt + 1;
66 f_raw(f_raw_cnt,:) = sym;
67 debug(sprintf (’[dvbt_7_iframe] inputbuffer: %d symbols\n’,f_raw_cnt),2);
68

69

The persistent variables have the following purpose:

f raw This matrix buffers the input data. One line equals one Symbol.

f raw cnt is a counter for the number of symbols in the input matrix f raw.

f raw cnt disc a counter for the number of discarded symbols.

frame detected This marker switches to ’1’ when a frame start has been de-
tected.

tps data mod A Matrix containing the modulated TPS values from the last
symbol. This matrix is required because TPS is modulated with DBPSK
(I need to know the last state to demodulate).

tps data This Vector contains the demodulated TPS data.

The buffers are cleared, once a complete frame has been processed.

2.2.2 Fixed data

Same as in the decoder, we need to know the fixed places of TPS and pilot
carriers. Also a sync word, to detect the start of a frame is defined.

72 %
73 % STEP 1: Prepare some fixed data from the spec
74 %
75 debug(sprintf(’[dvbt_7_iframe] generating fixed pilot&tps information...\n’),1);
76 % these are the carrier numbers taken from the spec (i HATE typing stupid numbers)
77 TPS_FIXED_2K = [34,50,209,346,413,569,595,688,790,901,1073,1219,1262,1286,1469,1594,1687];
78 TPS_FIXED_8K = [34,50,209,346,413,569,595,688,790,901,1073,1219,1262,1286,1469,1594,1687,1738,1754,1913,2050,2117,2273,2299,2392,2494,2605,2777,2923,2966,2990,3173,3298,3391,3442,3458,3617,3754,3821,3977,4003,4096,4198,4309,4481,4627,4670,4694,4877,5002,5095,5146,5162,5321,5458,5525,5681,5707,5800,5902,6013,6185,6331,6374,6398,6581,6706,6799];
79 PILOT_FIXED_2K = [0,48,54,87,141,156,192,201,255,279,282,333,432,450,483,525,531,618,636,714,759,765,780,804,873,888,918,939,942,969,984,1050,1101,1107,1110,1137,1140,1146,1206,1269,1323,1377,1491,1683,1704];
80 PILOT_FIXED_8K = [0,48,54,87,141,156,192,201,255,279,282,333,432,450,483,525,531,618,636,714,759,765,780,804,873,888,918,939,942,969,984,1050,1101,1107,1110,1137,1140,1146,1206,1269,1323,1377,1491,1683,1704,1752,1758,1791,1845,1860,1896,1905,1959,1983,1986,2037,2136,2154,2187,2229,2235,2322,2340,2418,2463,2469,2484,2508,2577,2592,2622,2643,2646,2673,2688,2754,2805,2811,2814,2841,2844,2850,2910,2973,3027,3081,3195,3387,3408,3456,3462,3495,3549,3564,3600,3609,3663,3687,3690,3741,3840,3858,3891,3933,3939,4026,4044,4122,4167,4173,4188,4212,4281,4296,4326,4347,4350,4377,4392,4458,4509,4515,4518,4545,4548,4554,4614,4677,4731,4785,4899,5091,5112,5160,5166,5199,5253,5268,5304,5313,5367,5391,5394,5445,5544,5562,5595,5637,5643,5730,5748,5826,5871,5877,5892,5916,5985,6000,6030,6051,6054,6081,6096,6162,6213,6219,6222,6249,6252,6258,6318,6381,6435,6489,6603,6795,6816];
81

82 TPS_SYNC_WORD = [0,0,1,1,0,1,0,1,1,1,1,0,1,1,1,0]’;
83 TPS_NOT_SYNC_WORD = [1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,1]’;
84

85 % switch mode
86 if DVB_SETTINGS.mode == ’2’
87 PILOT_FIXED = PILOT_FIXED_2K + 1;
88 TPS_FIXED = TPS_FIXED_2K + 1;
89 TPS_FIXED_CNT = 17;
90 PILOT_FIXED_CNT = 45;
91 elseif DVB_SETTINGS.mode == ’8’
92 PILOT_FIXED = PILOT_FIXED_8K + 1;

11

93 TPS_FIXED = TPS_FIXED_8K + 1;
94 TPS_FIXED_CNT = 68;
95 PILOT_FIXED_CNT = 177;
96 end
97

2.2.3 TPS demodulation

TPS demodulation is the most important part in the decoding process. Unless
the TPS information is correct, no other module can work properly.

In theory each carrier holding TPS information should convey the same bit.
Because of possible noise and disturbance during transmission, it is possible that
single bits won’t be correct. Therefore, we try to workaround this by using a
majority rule. The absolute numbers of logical zero and logical one are counted
and compared. The state, which occurred more often wins. Because this is a
relative simple rule, debugging information is given, if one of the state does not
win with at least 60% of the absolute number of sample.

The actual demodulating is done by calculating the L2 distance between the
current sample and the sample collected in the last symbol. If the distance is
greater than one (in a ideal transmission, the distance will either be zero or two)
the program considers this as a logical one (otherwise: logical zero).

Because TPS is modulated with DBPSK, the first symbol can’t contain any
information, the demodulation starts with symbol two.

101 if f_raw_cnt == 1
102 % we are on the first symbol. we just need to init the tps_data_raw
103 % vector. decoding ist NOT possible.
104 for CarrCnt = TPS_FIXED
105 tps_data_mod(1,CarrCnt) = sym(1,CarrCnt);
106 end % CarrCnt
107 else
108 tps_cnt = [0,0]; % we need this for the majority rule
109 for CarrCnt = TPS_FIXED
110 % simple PSK-demodulation. hope this works
111 if abs(real(tps_data_mod(1,CarrCnt)) - real(sym(1,CarrCnt))) > 1
112 tps_cnt (1,2) = tps_cnt (1,2) + 1;
113 else
114 tps_cnt (1,1) = tps_cnt (1,1) + 1;
115 end
116

117 % update ’old’ tps_data_mod (sounds funny :P)
118 tps_data_mod(1,CarrCnt) = sym(1,CarrCnt);
119 end % CarrCnt
120

121 % error detection... do a majority rule
122 [num,idx] = max (tps_cnt);
123 tps_data(f_raw_cnt,1) = idx - 1;
124

12

2.2.4 Frame start detection

Because the sync word is 16 bits long, we can’t decide if a frame has started
until the input buffer holds at least nSync = 17 1 symbols.

137 if f_raw_cnt < nSync
138 % we cant decide on a framestart... yet
139 frame = [];
140 return;
141 end
142

In case no start can be detected the first symbol in the input buffer is discarded
(FIFO). The other symbols in the input buffer are shifted one position down.
The next symbol arriving in the decoder will again be symbol number 17.

153 f_raw_cnt_disc = f_raw_cnt_disc + 1;
154 debug(sprintf(’[dvbt_7_iframe] no frame start yet (already discarded %d symbols)...\n’,f_raw_cnt_disc),2);
155 %shift input matrix, discard the ’old’ symbol number one
156 f_raw (1:(nSync-1),:) = f_raw(2:nSync,:); % (i know, this looks ugly)
157 f_raw (nSync,:) = zeros (1,wi);
158 f_raw_cnt = nSync -1;
159

160 % shift already decoded TPS-data
161 tps_data(1:(nSync-1),1) = tps_data(2:nSync,1);
162 tps_data(nSync) = -1;
163

Detecting a frame start is a simple compare operation of the decoded TPS data
and the sync word. In case they are the same, a frame start has been found.

144 % check for frame-start...
145 diff = [tps_data(2:nSync,1),TPS_SYNC_WORD,TPS_NOT_SYNC_WORD];
146 if diff(:,1) == diff(:,2)
147 debug(sprintf(’[dvbt_7_iframe] start of a Frame detectet! (1,3)\n’),4);
148 frame_detected = 1;
149 elseif diff(:,1) == diff(:,3)
150 debug(sprintf(’[dvbt_7_iframe] start of a Frame detectet! (2,4)\n’),4);
151 frame_detected = 1;
152

2.2.5 Strip pilot and TPS carriers

This is just the inverse process, as described in the encoder documentation
under 1.2.4. One difference is, that there are only two loops. This is because
in dvbt 7 iframe.m only one frame is processed (not a superframe). Same as in
1.2.4, there are three checks (fixed pilots, fixed TPS, scattered pilots). If the
carrier is not out of one of these groups, it is considered as payload and added
to the output matrix.

1NOT the BoyBand. Metal rul0rz!

13

188 for SymbolCnt = 1:1:68
189 % reset some local counters
190 tps_cnt = 0;
191 pilot_cnt = 0;
192 carrier_cnt = 0;
193

194 % for the scattered pilots: get the index of the FIRST scattered pilot:
195 % HINT: we need to add one, because matlab (and i) start to count carriers by 1.
196 % the same goes for (SymbolCnt - 1)
197 sc_pilot_1 = 1 + 3 * mod((SymbolCnt-1),4);
198

199

200 %
201 % strip the symbol...
202 %
203 for CarrCnt = 1:1:wi
204 %
205 % check for TPS
206 %
207 if CarrCnt == (TPS_FIXED(tps_cnt+1))
208 tps_cnt = tps_cnt + 1;
209 continue;
210 end
211

212 %
213 % check for fixed pilot
214 %
215 if CarrCnt == (PILOT_FIXED(pilot_cnt+1))
216 pilot_cnt = pilot_cnt + 1;
217 continue;
218 end
219

220 %
221 % check for scattered pilot
222 %
223 if mod((CarrCnt - sc_pilot_1),12) == 0
224 continue;
225 end
226

227 %
228 % okay... now we reached here means: this carrier actually contains payload.
229 %
230 carrier_cnt = carrier_cnt + 1;
231 frame(SymbolCnt,carrier_cnt) = f_raw(SymbolCnt,CarrCnt); % frame DOES now contain only the payload
232

233 % done. this carrier should now be stripped.
234

235 end % CarrCnt
236 debug(sprintf(’[dvbt_7_frame] %d payload carriers processed (should be 1512 or 6048)\n’,carrier_cnt),1);
237 end % SymbolCnt

14

2.3 Problems

Here the same error as in the encoder (1.3) occurs. A ’clear all’ before the
decoder run may help.

15

Part III

Testing

1 General considerations

Because every module in the pipeline uses its own interfaces, a generalized
testing routine is not possible. Also most modules need a different amount of
data to start working.

These two things make testing the whole pipeline difficult, therefore a single
test for every module has to be created.

2 Testing encoder and decoder

An easy way to test both, encoder and decoder, would be to encode some test
data, decode them and compare the decoded data with the original test data.
This test has to be repeated for every global setting, that influences the module.
In case of module 7, this is only the mode setting (2k- or 8k-mode).

2.1 Implementation

2.1.1 Test data

The test data is generated as four sets of continual numbers. Two of these sets
are changed into complex numbers by adding I.

24 % generate some test-symbols
25 tsym_1 = 0.001:0.001:(wi*1)/1000;
26 tsym_2 = (1+wi*1)/1000:0.001:(wi*2)/1000;
27 tsym_3 = (1+wi*2)/1000:0.001:(wi*3)/1000;
28 tsym_4 = (1+wi*3)/1000:0.001:(wi*4)/1000;
29

30 % make symbol 1 and 3 complex
31 tsym_1 = tsym_1 + j;
32 tsym_3 = tsym_3 + j;

2.1.2 Encoding

The encoder is loaded with a repeating cycle of these four test symbols. Once
its input buffers are filled, it should start decoding2.

2.1.3 Decoding

A loop is begin run over the matrix generated by the encoder. By changing
the start index of this loop, testing of the frame detection is possible. In case
the loop starts with index one, the decoder should find a frame start after 17
symbols, also not a single symbol should get discarded. Another possibility
would be to start at index 67: the first symbol still belongs to the first frame,

2this is already part of the test

16

so it should be discarded. The frame start should be detected after symbol 18
(which is symbol 17 of the 2nd frame).

2.2 Problems

The test routine needs user interaction.
First of all, the mode will not be switched automatically. To run a complete

test, the mode has to be changed in the file dvbt config encoder.m manually
Also, in case not everything goes the way it is supposed to to, a closer look

at the output of the script is required. The TPS check has not been automated
to far, the user has to ensure if one of the TPS-lines in the output equals all
zero.

17

